Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms: A case study
نویسندگان
چکیده
The use of multilayer ceramic capacitors (MLCCs) is increasing because they are surface-mountable and are used primarily in the expanding communication and computing market. In the MLCC manufacturing process, some 80% of the loss in yield is attributable to paste-printing quality problems. Improvement in the quality of MLCC screen-printing is therefore tactically and strategically important. This research extends existing MLCC screen-printing robust design results to search for a universal optimum solution. A metamodeling approach has been applied to solving a variety of optimization problems. This is an abstraction model form from a model. The abstracted model aims to reduce model complexity, and yet maintain validity. This work involved building a screen-printing quality metamodel, based upon fractional factorial experimental design data using a neural network approach—that were then solved by genetic algorithms. The empirical results are promising. The paper concludes with practical constraints and insights for management.
منابع مشابه
Solving the local positioning problem using a four-layer artificial neural network
Today, the global positioning systems (GPS) do not work well in buildings and in dense urban areas when there is no lines of sight between the user and their satellites. Hence, the local positioning system (LPS) has been considerably used in recent years. The main purpose of this research is to provide a four-layer artificial neural network based on nonlinear system solver (NLANN) for local pos...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملA Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process
Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کامل